Cargando…
Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification
SUMMARY: Federated learning enables collaboration in medicine, where data is scattered across multiple centers without the need to aggregate the data in a central cloud. While, in general, machine learning models can be applied to a wide range of data types, graph neural networks (GNNs) are particul...
Autores principales: | Pfeifer, Bastian, Chereda, Hryhorii, Martin, Roman, Saranti, Anna, Clemens, Sandra, Hauschild, Anne-Christin, Beißbarth, Tim, Holzinger, Andreas, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684359/ https://www.ncbi.nlm.nih.gov/pubmed/37988152 http://dx.doi.org/10.1093/bioinformatics/btad703 |
Ejemplares similares
-
The Ensembl REST API: Ensembl Data for Any Language
por: Yates, Andrew, et al.
Publicado: (2015) -
ESA-FedGNN: Efficient secure aggregation for federated graph neural networks
por: Liu, Yanjun, et al.
Publicado: (2023) -
Generating Explanations for Conceptual Validation of Graph Neural Networks: An Investigation of Symbolic Predicates Learned on Relevance-Ranked Sub-Graphs
por: Finzel, Bettina, et al.
Publicado: (2022) -
Federated Ensemble Regression Using Classification
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2020) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023)