Cargando…
PepCNN deep learning tool for predicting peptide binding residues in proteins using sequence, structural, and language model features
Protein–peptide interactions play a crucial role in various cellular processes and are implicated in abnormal cellular behaviors leading to diseases such as cancer. Therefore, understanding these interactions is vital for both functional genomics and drug discovery efforts. Despite a significant inc...
Autores principales: | Chandra, Abel, Sharma, Alok, Dehzangi, Iman, Tsunoda, Tatsuhiko, Sattar, Abdul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684570/ https://www.ncbi.nlm.nih.gov/pubmed/38016996 http://dx.doi.org/10.1038/s41598-023-47624-5 |
Ejemplares similares
-
PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids
por: Chandra, Abel, et al.
Publicado: (2018) -
RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix
por: Chandra, Abel Avitesh, et al.
Publicado: (2020) -
HseSUMO: Sumoylation site prediction using half-sphere exposures of amino acids residues
por: Sharma, Alok, et al.
Publicado: (2019) -
Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix
por: Chandra, Abel, et al.
Publicado: (2019) -
GlyStruct: glycation prediction using structural properties of amino acid residues
por: Reddy, Hamendra Manhar, et al.
Publicado: (2019)