Cargando…

Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass

Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dolpatcha, Sureeporn, Phong, Huynh Xuan, Thanonkeo, Sudarat, Klanrit, Preekamol, Yamada, Mamoru, Thanonkeo, Pornthap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684600/
https://www.ncbi.nlm.nih.gov/pubmed/38017261
http://dx.doi.org/10.1038/s41598-023-48408-7
_version_ 1785151438628847616
author Dolpatcha, Sureeporn
Phong, Huynh Xuan
Thanonkeo, Sudarat
Klanrit, Preekamol
Yamada, Mamoru
Thanonkeo, Pornthap
author_facet Dolpatcha, Sureeporn
Phong, Huynh Xuan
Thanonkeo, Sudarat
Klanrit, Preekamol
Yamada, Mamoru
Thanonkeo, Pornthap
author_sort Dolpatcha, Sureeporn
collection PubMed
description Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.
format Online
Article
Text
id pubmed-10684600
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106846002023-11-30 Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass Dolpatcha, Sureeporn Phong, Huynh Xuan Thanonkeo, Sudarat Klanrit, Preekamol Yamada, Mamoru Thanonkeo, Pornthap Sci Rep Article Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass. Nature Publishing Group UK 2023-11-28 /pmc/articles/PMC10684600/ /pubmed/38017261 http://dx.doi.org/10.1038/s41598-023-48408-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Dolpatcha, Sureeporn
Phong, Huynh Xuan
Thanonkeo, Sudarat
Klanrit, Preekamol
Yamada, Mamoru
Thanonkeo, Pornthap
Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_full Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_fullStr Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_full_unstemmed Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_short Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_sort adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of pichia kudriavzevii from lignocellulosic biomass
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684600/
https://www.ncbi.nlm.nih.gov/pubmed/38017261
http://dx.doi.org/10.1038/s41598-023-48408-7
work_keys_str_mv AT dolpatchasureeporn adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT phonghuynhxuan adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT thanonkeosudarat adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT klanritpreekamol adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT yamadamamoru adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT thanonkeopornthap adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass