Cargando…

The limits of stress-tolerance for zooplankton resting stages in freshwater ponds

In seasonal environments, many organisms evolve strategies such as diapause to survive stressful periods. Understanding the link between habitat stability and diapause strategy can help predict a population’s survival in a changing world. Indeed, resting stages may be an important way freshwater org...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Joana L., Ebert, Dieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684647/
https://www.ncbi.nlm.nih.gov/pubmed/37971560
http://dx.doi.org/10.1007/s00442-023-05478-8
Descripción
Sumario:In seasonal environments, many organisms evolve strategies such as diapause to survive stressful periods. Understanding the link between habitat stability and diapause strategy can help predict a population’s survival in a changing world. Indeed, resting stages may be an important way freshwater organisms can survive periods of drought or freezing, and as the frequency and extent of drought or freezing vary strongly among habitats and are predicted to change with climate change, it raises questions about how organisms cope with, and survive, environmental stress. Using Daphnia magna as a model system, we tested the ability of resting stages from different populations to cope with stress during diapause. The combination of elevated temperatures and wet conditions during diapause shows to prevent hatching altogether. In contrast, hatching is relatively higher after a dry and warm diapause, but declines with rising temperatures, while time to hatch increases. Resting stages produced by populations from summer-dry habitats perform slightly, but consistently, better at higher temperatures and dryness, supporting the local adaptation hypothesis. A higher trehalose content in resting eggs from summer-dry habitat might explain such pattern. Considering that temperatures and summer droughts are projected to increase in upcoming years, it is fundamental to know how resting stages resist stressful conditions so as to predict and protect the ecological functioning of freshwater ecosystems. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00442-023-05478-8.