Cargando…
Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model
INTRODUCTION: Undernutrition spontaneously occurs in ewes during late gestation and the pituitary is an important hinge in the neurohumoral regulatory system. However, little is known about the effect of undernutrition on pituitary metabolism. METHODS: Here, 10 multiparous ewes were restricted to a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684748/ https://www.ncbi.nlm.nih.gov/pubmed/38035344 http://dx.doi.org/10.3389/fnut.2023.1251936 |
_version_ | 1785151475065815040 |
---|---|
author | Liu, Shuai Lu, Huizhen Mao, Shengyong Zhang, Zijun Zhu, Wen Cheng, Jianbo Xue, Yanfeng |
author_facet | Liu, Shuai Lu, Huizhen Mao, Shengyong Zhang, Zijun Zhu, Wen Cheng, Jianbo Xue, Yanfeng |
author_sort | Liu, Shuai |
collection | PubMed |
description | INTRODUCTION: Undernutrition spontaneously occurs in ewes during late gestation and the pituitary is an important hinge in the neurohumoral regulatory system. However, little is known about the effect of undernutrition on pituitary metabolism. METHODS: Here, 10 multiparous ewes were restricted to a 30% feeding level during late gestation to establish an undernutrition model while another 10 ewes were fed normally as controls. All the ewes were sacrificed, and pituitary samples were collected to perform transcriptome, metabolome, and quantitative real-time PCR analysis and investigate the metabolic changes. RESULTS: PCA and PLS-DA of total genes showed that undernutrition changed the total transcriptome profile of the pituitary gland, and 581 differentially expressed genes (DEGs) were identified between the two groups. Clusters of orthologous groups for eukaryotic complete genomes demonstrated that substance transport and metabolism, including lipids, carbohydrates, and amino acids, energy production and conversion, ribosomal structure and biogenesis, and the cytoskeleton were enriched by DEGs. Kyoto encyclopedia of genes and genomes pathway enrichment analysis displayed that the phagosome, intestinal immune network, and oxidative phosphorylation were enriched by DEGs. Further analysis found that undernutrition enhanced the lipid degradation and amino acid transport, repressing lipid synthesis and transport and amino acid degradation of the pituitary gland. Moreover, the general metabolic profiles and metabolic pathways were affected by undernutrition, repressing the 60S, 40S, 28S, and 39S subunits of the ribosomal structure for translation and myosin and actin synthesis for cytoskeleton. Undernutrition was found also to be implicated in the suppression of oxidative phosphorylation for energy production and conversion into a downregulation of genes related to T cell function and the immune response and an upregulation of genes involved in inflammatory reactions enriching phagosomes. DISCUSSION: This study comprehensively analyses the effect of undernutrition on the pituitary gland in a pregnant sheep model, which provides a foundation for further research into the mechanisms of undernutrition-caused hormone secretion and metabolic disorders. |
format | Online Article Text |
id | pubmed-10684748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106847482023-11-30 Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model Liu, Shuai Lu, Huizhen Mao, Shengyong Zhang, Zijun Zhu, Wen Cheng, Jianbo Xue, Yanfeng Front Nutr Nutrition INTRODUCTION: Undernutrition spontaneously occurs in ewes during late gestation and the pituitary is an important hinge in the neurohumoral regulatory system. However, little is known about the effect of undernutrition on pituitary metabolism. METHODS: Here, 10 multiparous ewes were restricted to a 30% feeding level during late gestation to establish an undernutrition model while another 10 ewes were fed normally as controls. All the ewes were sacrificed, and pituitary samples were collected to perform transcriptome, metabolome, and quantitative real-time PCR analysis and investigate the metabolic changes. RESULTS: PCA and PLS-DA of total genes showed that undernutrition changed the total transcriptome profile of the pituitary gland, and 581 differentially expressed genes (DEGs) were identified between the two groups. Clusters of orthologous groups for eukaryotic complete genomes demonstrated that substance transport and metabolism, including lipids, carbohydrates, and amino acids, energy production and conversion, ribosomal structure and biogenesis, and the cytoskeleton were enriched by DEGs. Kyoto encyclopedia of genes and genomes pathway enrichment analysis displayed that the phagosome, intestinal immune network, and oxidative phosphorylation were enriched by DEGs. Further analysis found that undernutrition enhanced the lipid degradation and amino acid transport, repressing lipid synthesis and transport and amino acid degradation of the pituitary gland. Moreover, the general metabolic profiles and metabolic pathways were affected by undernutrition, repressing the 60S, 40S, 28S, and 39S subunits of the ribosomal structure for translation and myosin and actin synthesis for cytoskeleton. Undernutrition was found also to be implicated in the suppression of oxidative phosphorylation for energy production and conversion into a downregulation of genes related to T cell function and the immune response and an upregulation of genes involved in inflammatory reactions enriching phagosomes. DISCUSSION: This study comprehensively analyses the effect of undernutrition on the pituitary gland in a pregnant sheep model, which provides a foundation for further research into the mechanisms of undernutrition-caused hormone secretion and metabolic disorders. Frontiers Media S.A. 2023-11-15 /pmc/articles/PMC10684748/ /pubmed/38035344 http://dx.doi.org/10.3389/fnut.2023.1251936 Text en Copyright © 2023 Liu, Lu, Mao, Zhang, Zhu, Cheng and Xue. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Nutrition Liu, Shuai Lu, Huizhen Mao, Shengyong Zhang, Zijun Zhu, Wen Cheng, Jianbo Xue, Yanfeng Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model |
title | Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model |
title_full | Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model |
title_fullStr | Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model |
title_full_unstemmed | Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model |
title_short | Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model |
title_sort | undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model |
topic | Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684748/ https://www.ncbi.nlm.nih.gov/pubmed/38035344 http://dx.doi.org/10.3389/fnut.2023.1251936 |
work_keys_str_mv | AT liushuai undernutritioninducedsubstancemetabolismandenergyproductiondisordersaffectedthestructureandfunctionofthepituitaryglandinapregnantsheepmodel AT luhuizhen undernutritioninducedsubstancemetabolismandenergyproductiondisordersaffectedthestructureandfunctionofthepituitaryglandinapregnantsheepmodel AT maoshengyong undernutritioninducedsubstancemetabolismandenergyproductiondisordersaffectedthestructureandfunctionofthepituitaryglandinapregnantsheepmodel AT zhangzijun undernutritioninducedsubstancemetabolismandenergyproductiondisordersaffectedthestructureandfunctionofthepituitaryglandinapregnantsheepmodel AT zhuwen undernutritioninducedsubstancemetabolismandenergyproductiondisordersaffectedthestructureandfunctionofthepituitaryglandinapregnantsheepmodel AT chengjianbo undernutritioninducedsubstancemetabolismandenergyproductiondisordersaffectedthestructureandfunctionofthepituitaryglandinapregnantsheepmodel AT xueyanfeng undernutritioninducedsubstancemetabolismandenergyproductiondisordersaffectedthestructureandfunctionofthepituitaryglandinapregnantsheepmodel |