Cargando…
Discriminative machine learning for maximal representative subsampling
Biased population samples pose a prevalent problem in the social sciences. Therefore, we present two novel methods that are based on positive-unlabeled learning to mitigate bias. Both methods leverage auxiliary information from a representative data set and train machine learning classifiers to dete...
Autores principales: | Hauptmann, Tony, Fellenz, Sophie, Nathan, Laksan, Tüscher, Oliver, Kramer, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684887/ https://www.ncbi.nlm.nih.gov/pubmed/38017053 http://dx.doi.org/10.1038/s41598-023-48177-3 |
Ejemplares similares
-
Subsampling of cues in associative learning
por: Perez, Omar D., et al.
Publicado: (2022) -
Subsampling
por: Politis, Dimitris N, et al.
Publicado: (1999) -
Subsampling scaling
por: Levina, A., et al.
Publicado: (2017) -
Genomic prediction using subsampling
por: Xavier, Alencar, et al.
Publicado: (2017) -
Learning Curves for Noisy Heterogeneous Feature-Subsampled Ridge Ensembles
por: Ruben, Benjamin S., et al.
Publicado: (2023)