Cargando…
Lysosome-Related Diagnostic Biomarkers for Pediatric Sepsis Integrated by Machine Learning
BACKGROUND: There is currently no biomarker that can reliably identify sepsis, despite recent scientific advancements. We systematically evaluated the value of lysosomal genes for the diagnosis of pediatric sepsis. METHODS: Three datasets (GSE13904, GSE26378, and GSE26440) were obtained from the gen...
Autores principales: | Yang, Yang, Zhang, Genhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685105/ https://www.ncbi.nlm.nih.gov/pubmed/38034045 http://dx.doi.org/10.2147/JIR.S437110 |
Ejemplares similares
-
Prognostic Lysosome-Related Biomarkers for Predicting Drug Candidates in Hepatocellular Carcinoma: An Insilco Analysis
por: Xu, Junxiu, et al.
Publicado: (2023) -
Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in pediatric sepsis by integrating bioinformatics and machine learning
por: Zhang, Wen-Yuan, et al.
Publicado: (2023) -
Metabolomics and machine learning approaches for diagnostic and prognostic biomarkers screening in sepsis
por: She, Han, et al.
Publicado: (2023) -
Sepsis biomarkers and diagnostic tools with a focus on machine learning
por: Komorowski, Matthieu, et al.
Publicado: (2022) -
Identification of Potential Diagnostic Gene Targets for Pediatric Sepsis Based on Bioinformatics and Machine Learning
por: Qiao, Ying, et al.
Publicado: (2021)