Cargando…

HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM

The bone marrow (BM) microenvironment is critical for dissemination, growth, and survival of multiple myeloma (MM) cells. Homing of myeloma cells to the BM niche is a crucial step in MM dissemination, but the mechanisms involved are incompletely understood. In particular, any role of matrikines, neo...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Hae Yeun, Huynh, Mailee, Roopra, Avtar, Callander, Natalie S., Miyamoto, Shigeki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society of Hematology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685165/
https://www.ncbi.nlm.nih.gov/pubmed/37647592
http://dx.doi.org/10.1182/bloodadvances.2023010139
_version_ 1785151568795926528
author Chang, Hae Yeun
Huynh, Mailee
Roopra, Avtar
Callander, Natalie S.
Miyamoto, Shigeki
author_facet Chang, Hae Yeun
Huynh, Mailee
Roopra, Avtar
Callander, Natalie S.
Miyamoto, Shigeki
author_sort Chang, Hae Yeun
collection PubMed
description The bone marrow (BM) microenvironment is critical for dissemination, growth, and survival of multiple myeloma (MM) cells. Homing of myeloma cells to the BM niche is a crucial step in MM dissemination, but the mechanisms involved are incompletely understood. In particular, any role of matrikines, neofunctional peptides derived from extracellular matrix proteins, remains unknown. Here, we report that a matrikine derived from hyaluronan and proteoglycan link protein 1 (HAPLN1) induces MM cell adhesion to the BM stromal components, such as fibronectin, endothelial cells, and stromal cells and, furthermore, induces their chemotactic and chemokinetic migration. In a mouse xenograft model, we show that MM cells preferentially home to HAPLN1 matrikine–conditioned BM. The transcription factor STAT1 is activated by HAPLN1 matrikine and is necessary to induce MM cell adhesion, migration, migration-related genes, and BM homing. STAT1 activation is mediated by interferon beta (IFN-β), which is induced by NF-κB after stimulation by HAPLN1 matrikine. Finally, we also provide evidence that higher levels of HAPLN1 in BM samples correlate with poorer progression-free survival of patients with newly diagnosed MM. These data reveal that a matrikine present in the BM microenvironment acts as a chemoattractant, plays an important role in BM homing of MM cells via NF-κB–IFN-β–STAT1 signaling, and may help identify patients with poor outcomes. This study also provides a mechanistic rationale for targeting HAPLN1 matrikine in MM therapy.
format Online
Article
Text
id pubmed-10685165
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The American Society of Hematology
record_format MEDLINE/PubMed
spelling pubmed-106851652023-11-30 HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM Chang, Hae Yeun Huynh, Mailee Roopra, Avtar Callander, Natalie S. Miyamoto, Shigeki Blood Adv Lymphoid Neoplasia The bone marrow (BM) microenvironment is critical for dissemination, growth, and survival of multiple myeloma (MM) cells. Homing of myeloma cells to the BM niche is a crucial step in MM dissemination, but the mechanisms involved are incompletely understood. In particular, any role of matrikines, neofunctional peptides derived from extracellular matrix proteins, remains unknown. Here, we report that a matrikine derived from hyaluronan and proteoglycan link protein 1 (HAPLN1) induces MM cell adhesion to the BM stromal components, such as fibronectin, endothelial cells, and stromal cells and, furthermore, induces their chemotactic and chemokinetic migration. In a mouse xenograft model, we show that MM cells preferentially home to HAPLN1 matrikine–conditioned BM. The transcription factor STAT1 is activated by HAPLN1 matrikine and is necessary to induce MM cell adhesion, migration, migration-related genes, and BM homing. STAT1 activation is mediated by interferon beta (IFN-β), which is induced by NF-κB after stimulation by HAPLN1 matrikine. Finally, we also provide evidence that higher levels of HAPLN1 in BM samples correlate with poorer progression-free survival of patients with newly diagnosed MM. These data reveal that a matrikine present in the BM microenvironment acts as a chemoattractant, plays an important role in BM homing of MM cells via NF-κB–IFN-β–STAT1 signaling, and may help identify patients with poor outcomes. This study also provides a mechanistic rationale for targeting HAPLN1 matrikine in MM therapy. The American Society of Hematology 2023-09-01 /pmc/articles/PMC10685165/ /pubmed/37647592 http://dx.doi.org/10.1182/bloodadvances.2023010139 Text en © 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Lymphoid Neoplasia
Chang, Hae Yeun
Huynh, Mailee
Roopra, Avtar
Callander, Natalie S.
Miyamoto, Shigeki
HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM
title HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM
title_full HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM
title_fullStr HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM
title_full_unstemmed HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM
title_short HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM
title_sort hapln1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with mm
topic Lymphoid Neoplasia
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685165/
https://www.ncbi.nlm.nih.gov/pubmed/37647592
http://dx.doi.org/10.1182/bloodadvances.2023010139
work_keys_str_mv AT changhaeyeun hapln1matrikineabonemarrowhomingfactorlinkedtopooroutcomesinpatientswithmm
AT huynhmailee hapln1matrikineabonemarrowhomingfactorlinkedtopooroutcomesinpatientswithmm
AT roopraavtar hapln1matrikineabonemarrowhomingfactorlinkedtopooroutcomesinpatientswithmm
AT callandernatalies hapln1matrikineabonemarrowhomingfactorlinkedtopooroutcomesinpatientswithmm
AT miyamotoshigeki hapln1matrikineabonemarrowhomingfactorlinkedtopooroutcomesinpatientswithmm