Cargando…

Surface Modification of Silica with β-Alanine Derivatives for Unique Applications in Liquid Chromatography

[Image: see text] Column purchasing cost is an important issue for an analyst to analyze complex sample matrices. Here, we report the development of an amino acid (β-alanine)-derived stationary phase (Sil-Ala-C12) with strategic and effective interaction sites (amide and urea as embedded polar group...

Descripción completa

Detalles Bibliográficos
Autores principales: Mallik, Abul K., Montero, Lidia, Rösler, Jonas, Meckelmann, Sven W., Schmitz, Oliver J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685355/
https://www.ncbi.nlm.nih.gov/pubmed/37949437
http://dx.doi.org/10.1021/acsami.3c11932
Descripción
Sumario:[Image: see text] Column purchasing cost is an important issue for an analyst to analyze complex sample matrices. Here, we report the development of an amino acid (β-alanine)-derived stationary phase (Sil-Ala-C12) with strategic and effective interaction sites (amide and urea as embedded polar groups with C12 alkyl chain) able to separate various kinds of analytes. Owing to the balanced hydrophobicity and hydrophilicity of the phase, it showed exceptional separation abilities in both reversed-phase high-performance liquid chromatography (RP-HPLC) as a hydrophobic phase and hydrophilic interaction chromatography (HILIC) as a hydrophilic phase. Remarkably, the baseline separation was achieved for the challenging β- and γ-isomers of tocopherol. Usually, three columns such as pentafluorophenyl or C30, C18, and sulfobetaine HILIC are required for the analysis of vitamin E, capsaicinoids, and vitamin C in chili peppers (Capsicum spp.), respectively. However, only Sil-Ala-C12 was able to separate these analytes. A single column can serve 3–4 purposes, which suggests that Sil-Ala-C12 had the potential to reduce column purchasing costs.