Cargando…
SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution
In this study, a silver nanoparticle anchored transparent tape sensor was used to detect 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) adsorbed on carbon steel surface utilizing the surface-enhanced Raman scattering (SERS) technique. SERS detection enabled the extreme amplification of R...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685366/ https://www.ncbi.nlm.nih.gov/pubmed/38034666 http://dx.doi.org/10.1016/j.heliyon.2023.e22158 |
_version_ | 1785151615908446208 |
---|---|
author | Haruna, Kabiru Saleh, Tawfik A. Sorour, Ahmad A. |
author_facet | Haruna, Kabiru Saleh, Tawfik A. Sorour, Ahmad A. |
author_sort | Haruna, Kabiru |
collection | PubMed |
description | In this study, a silver nanoparticle anchored transparent tape sensor was used to detect 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) adsorbed on carbon steel surface utilizing the surface-enhanced Raman scattering (SERS) technique. SERS detection enabled the extreme amplification of Raman signals emitted by inhibitor molecules in order to describe their adsorption behavior on metallic/alloy surfaces. The strong corrosion inhibition performance of AEP-GO against carbon steel corrosion in 15 % HCl solution was proven by weight loss, electrochemical measurements and surface characterization techniques in a previous study. The SERS analysis showed the Raman peaks intensity of AEP-GO on the carbon surface gradually increases with increasing AEP-GO concentration. The increasing intensity with concentration correlated well with the previously reported weight loss and electrochemical results. DFT calculation was also carried out to understand the nature of interaction between the adsorbed AEP-GO molecules and the silver nanoparticles. The AEP-GO_Ag adduct's optimized structure reveals the silver metals approached the oxygen atom at the GO epoxy group in AEP-GO rather than the oxygen atoms at the carbonyl and hydroxyl groups. With no restrictions on substrate materials, the fabricated SERS sensor created in this study can be employed as a versatile sensor to characterize corrosion adsorption processes on metal surfaces. |
format | Online Article Text |
id | pubmed-10685366 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106853662023-11-30 SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution Haruna, Kabiru Saleh, Tawfik A. Sorour, Ahmad A. Heliyon Research Article In this study, a silver nanoparticle anchored transparent tape sensor was used to detect 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) adsorbed on carbon steel surface utilizing the surface-enhanced Raman scattering (SERS) technique. SERS detection enabled the extreme amplification of Raman signals emitted by inhibitor molecules in order to describe their adsorption behavior on metallic/alloy surfaces. The strong corrosion inhibition performance of AEP-GO against carbon steel corrosion in 15 % HCl solution was proven by weight loss, electrochemical measurements and surface characterization techniques in a previous study. The SERS analysis showed the Raman peaks intensity of AEP-GO on the carbon surface gradually increases with increasing AEP-GO concentration. The increasing intensity with concentration correlated well with the previously reported weight loss and electrochemical results. DFT calculation was also carried out to understand the nature of interaction between the adsorbed AEP-GO molecules and the silver nanoparticles. The AEP-GO_Ag adduct's optimized structure reveals the silver metals approached the oxygen atom at the GO epoxy group in AEP-GO rather than the oxygen atoms at the carbonyl and hydroxyl groups. With no restrictions on substrate materials, the fabricated SERS sensor created in this study can be employed as a versatile sensor to characterize corrosion adsorption processes on metal surfaces. Elsevier 2023-11-10 /pmc/articles/PMC10685366/ /pubmed/38034666 http://dx.doi.org/10.1016/j.heliyon.2023.e22158 Text en © 2023 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Haruna, Kabiru Saleh, Tawfik A. Sorour, Ahmad A. SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution |
title | SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution |
title_full | SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution |
title_fullStr | SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution |
title_full_unstemmed | SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution |
title_short | SERS detection of 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) on X60 carbon steel surface in 15% HCl solution |
title_sort | sers detection of 1,4-bis(2-aminoethyl)piperazine functionalized go (aep-go) on x60 carbon steel surface in 15% hcl solution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685366/ https://www.ncbi.nlm.nih.gov/pubmed/38034666 http://dx.doi.org/10.1016/j.heliyon.2023.e22158 |
work_keys_str_mv | AT harunakabiru sersdetectionof14bis2aminoethylpiperazinefunctionalizedgoaepgoonx60carbonsteelsurfacein15hclsolution AT salehtawfika sersdetectionof14bis2aminoethylpiperazinefunctionalizedgoaepgoonx60carbonsteelsurfacein15hclsolution AT sorourahmada sersdetectionof14bis2aminoethylpiperazinefunctionalizedgoaepgoonx60carbonsteelsurfacein15hclsolution |