Cargando…
Photoredox/Enzymatic Catalysis Enabling Redox-Neutral Decarboxylative Asymmetric C–C Coupling for Asymmetric Synthesis of Chiral 1,2-Amino Alcohols
[Image: see text] Photocatalysis offers tremendous opportunities for enzymes to access new functions. Herein, we described a redox-neutral photocatalysis/enzymatic catalysis system for the asymmetric synthesis of chiral 1,2-amino alcohols via decarboxylative radical C–C coupling of N-arylglycines an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685423/ https://www.ncbi.nlm.nih.gov/pubmed/38034963 http://dx.doi.org/10.1021/jacsau.3c00366 |
Sumario: | [Image: see text] Photocatalysis offers tremendous opportunities for enzymes to access new functions. Herein, we described a redox-neutral photocatalysis/enzymatic catalysis system for the asymmetric synthesis of chiral 1,2-amino alcohols via decarboxylative radical C–C coupling of N-arylglycines and aldehydes by combining an organic photocatalyst, eosin Y, and carbonyl reductase RasADH. Notably, this protocol avoids using any sacrificial reductants. A possible reaction mechanism proposed is that the transformation proceeds through sequential photoinduced decarboxylative radical addition to an aldehyde and a photoenzymatic deracemization pathway. This redox-neutral photoredox/enzymatic strategy is promising not only for effective synthesis of a series of chiral amino alcohols in a green and sustainable manner but also for the design of other novel C–C radical coupling transformations for the synthesis of bioactive molecules. |
---|