Cargando…
Snowball 2.0: Generic Material Data Parser for ChemDataExtractor
[Image: see text] The ever-growing amount of chemical data found in the scientific literature has led to the emergence of data-driven materials discovery. The first step in the pipeline, to automatically extract chemical information from plain text, has been driven by the development of software too...
Autores principales: | Dong, Qingyang, Cole, Jacqueline M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685441/ https://www.ncbi.nlm.nih.gov/pubmed/37934697 http://dx.doi.org/10.1021/acs.jcim.3c01281 |
Ejemplares similares
-
Auto-generated database of semiconductor band gaps using ChemDataExtractor
por: Dong, Qingyang, et al.
Publicado: (2022) -
A database of battery materials auto-generated using ChemDataExtractor
por: Huang, Shu, et al.
Publicado: (2020) -
A thermoelectric materials database auto-generated from the scientific literature using ChemDataExtractor
por: Sierepeklis, Odysseas, et al.
Publicado: (2022) -
Single Model for Organic and Inorganic Chemical Named
Entity Recognition in ChemDataExtractor
por: Isazawa, Taketomo, et al.
Publicado: (2022) -
Auto-generating databases of Yield Strength and Grain Size using ChemDataExtractor
por: Kumar, Pankaj, et al.
Publicado: (2022)