Cargando…
Δ(2) machine learning for reaction property prediction
The emergence of Δ-learning models, whereby machine learning (ML) is used to predict a correction to a low-level energy calculation, provides a versatile route to accelerate high-level energy evaluations at a given geometry. However, Δ-learning models are inapplicable to reaction properties like hea...
Autores principales: | Zhao, Qiyuan, Anstine, Dylan M., Isayev, Olexandr, Savoie, Brett M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686042/ https://www.ncbi.nlm.nih.gov/pubmed/38033903 http://dx.doi.org/10.1039/d3sc02408c |
Ejemplares similares
-
Machine Learning
Interatomic Potentials and Long-Range
Physics
por: Anstine, Dylan M., et al.
Publicado: (2023) -
Generative Models as
an Emerging Paradigm in the Chemical
Sciences
por: Anstine, Dylan M., et al.
Publicado: (2023) -
Comprehensive exploration of graphically defined reaction spaces
por: Zhao, Qiyuan, et al.
Publicado: (2023) -
Prediction of protein pK(a) with representation learning
por: Gokcan, Hatice, et al.
Publicado: (2022) -
The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions
por: Liu, Zhen, et al.
Publicado: (2023)