Cargando…
The activity of engrailed imaginal disc enhancers is modulated epigenetically by chromatin and autoregulation
engrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686433/ https://www.ncbi.nlm.nih.gov/pubmed/37967127 http://dx.doi.org/10.1371/journal.pgen.1010826 |
Sumario: | engrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally restricted patterns. The en embryonic enhancers are located in discrete DNA fragments that can function correctly in small reporter transgenes. In contrast, the en imaginal disc enhancers (IDEs) do not function correctly in small reporter transgenes. En is expressed in the posterior compartment of wing imaginal discs; in contrast, small IDE-reporter transgenes are expressed mainly in the anterior compartment. We found that En binds to the IDEs and suggest that it may directly repress IDE function and modulate En expression levels. We identified two en IDEs, O and S. Deletion of either of these IDEs from a 79kb HA-en rescue transgene (HAen79) caused a loss-of-function en phenotype when the HAen79 transgene was the sole source of En. In contrast, flies with a deletion of the same IDEs from an endogenous en gene had no phenotype, suggesting a resiliency not seen in the HAen79 rescue transgene. Inserting a gypsy insulator in HAen79 between en regulatory DNA and flanking sequences strengthened the activity of HAen79, giving better function in both the ON and OFF transcriptional states. Altogether our data suggest that the en IDEs stimulate expression in the entire imaginal disc, and that the ON/OFF state is set by epigenetic memory set by the embryonic enhancers. This epigenetic regulation is similar to that of the Ultrabithorax IDEs and we suggest that the activity of late-acting enhancers in other genes may be similarly regulated. |
---|