Cargando…

Trans-vaccenic acid reprograms CD8(+) T cells and anti-tumour immunity

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unkno...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Hao, Xia, Siyuan, Xiang, Junhong, Li, Yuancheng, Ross, Matthew O., Lim, Seon Ah, Yang, Fan, Tu, Jiayi, Xie, Lishi, Dougherty, Urszula, Zhang, Freya Q., Zheng, Zhong, Zhang, Rukang, Wu, Rong, Dong, Lei, Su, Rui, Chen, Xiufen, Althaus, Thomas, Riedell, Peter A., Jonker, Patrick B., Muir, Alexander, Lesinski, Gregory B., Rafiq, Sarwish, Dhodapkar, Madhav V., Stock, Wendy, Odenike, Olatoyosi, Patel, Anand A., Opferman, Joseph, Tsuji, Takemasa, Matsuzaki, Junko, Shah, Hardik, Faubert, Brandon, Elf, Shannon E., Layden, Brian, Bissonnette, B. Marc, He, Yu-Ying, Kline, Justin, Mao, Hui, Odunsi, Kunle, Gao, Xue, Chi, Hongbo, He, Chuan, Chen, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686835/
https://www.ncbi.nlm.nih.gov/pubmed/37993715
http://dx.doi.org/10.1038/s41586-023-06749-3
Descripción
Sumario:Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8(+) T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously(1). Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter(2,3), but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively(4,5). Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands(6–8). TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP–PKA–CREB axis for enhanced CD8(+) T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8(+) T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.