Cargando…
BELMM: Bayesian model selection and random walk smoothing in time-series clustering
MOTIVATION: Due to advances in measuring technology, many new phenotype, gene expression, and other omics time-course datasets are now commonly available. Cluster analysis may provide useful information about the structure of such data. RESULTS: In this work, we propose BELMM (Bayesian Estimation of...
Autores principales: | Sarala, Olli, Pyhäjärvi, Tanja, Sillanpää, Mikko J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686958/ https://www.ncbi.nlm.nih.gov/pubmed/37963057 http://dx.doi.org/10.1093/bioinformatics/btad686 |
Ejemplares similares
-
Model guided trait-specific co-expression network estimation as a new perspective for identifying molecular interactions and pathways
por: Kontio, Juho A. J., et al.
Publicado: (2021) -
A Gaussian process model and Bayesian variable selection for mapping function-valued quantitative traits with incomplete phenotypic data
por: Vanhatalo, Jarno, et al.
Publicado: (2019) -
Estimation of dynamic SNP-heritability with Bayesian Gaussian process models
por: Arjas, Arttu, et al.
Publicado: (2020) -
Detection of Epistasis for Flowering Time Using Bayesian Multilocus Estimation in a Barley MAGIC Population
por: Mathew, Boby, et al.
Publicado: (2018) -
Clustering Time-Series Gene Expression Data Using Smoothing Spline Derivatives
por: Déjean, S, et al.
Publicado: (2007)