Cargando…
Improving PM(2.5) prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm
Fine particulate matter (PM(2.5)) is a significant air pollutant that drives the most chronic health problems and premature mortality in big metropolitans such as Delhi. In such a context, accurate prediction of PM(2.5) concentration is critical for raising public awareness, allowing sensitive popul...
Autores principales: | Masood, Adil, Hameed, Mohammed Majeed, Srivastava, Aman, Pham, Quoc Bao, Ahmad, Kafeel, Razali, Siti Fatin Mohd, Baowidan, Souad Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687010/ https://www.ncbi.nlm.nih.gov/pubmed/38030733 http://dx.doi.org/10.1038/s41598-023-47492-z |
Ejemplares similares
-
Data-driven models for atmospheric air temperature forecasting at a continental climate region
por: Alomar, Mohamed Khalid, et al.
Publicado: (2022) -
Influence of Temperature and Relative Humidity on PM(2.5) Concentration over Delhi
por: Vaishali, et al.
Publicado: (2023) -
Performance of high resolution (400 m) PM(2.5) forecast over Delhi
por: Jena, Chinmay, et al.
Publicado: (2021) -
Elemental Composition and Sources of Fine Particulate Matter (PM(2.5)) in Delhi, India
por: Sharma, S. K., et al.
Publicado: (2023) -
Variations and Source Apportionment of PM(2.5) and PM(10) Before and During COVID-19 Lockdown Phases in Delhi, India
por: Fatima, Sadaf, et al.
Publicado: (2022)