Cargando…
Estimation of concrete materials uniaxial compressive strength using soft computing techniques
This study addresses a critical gap in concrete strength prediction by conducting a comparative analysis of three deep learning algorithms: convolutional neural networks (CNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. Unlike previous studies that employed various ma...
Autores principales: | Raju, Matiur Rahman, Rahman, Mahfuzur, Hasan, Md Mehedi, Islam, Md Monirul, Alam, Md Shahrior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687024/ https://www.ncbi.nlm.nih.gov/pubmed/38034748 http://dx.doi.org/10.1016/j.heliyon.2023.e22502 |
Ejemplares similares
-
Integration of Rice Husk Ash as Supplementary Cementitious Material in the Production of Sustainable High-Strength Concrete
por: Hasan, Noor Md. Sadiqul, et al.
Publicado: (2022) -
Lithological Control on the Estimation of Uniaxial Compressive Strength by the P-Wave Velocity Using Supervised and Unsupervised Learning
por: Rahman, Tabish, et al.
Publicado: (2021) -
Analysis of Homogel Uniaxial Compression Strength on Bio Grouting Material
por: Park, Kyungho, et al.
Publicado: (2016) -
Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash
por: Safiuddin, Md., et al.
Publicado: (2016) -
HYFIS vs FMR, LWR and Least squares regression methods in estimating uniaxial compressive strength of evaporitic rocks
por: Hassan, Mohamed Yusuf, et al.
Publicado: (2023)