Cargando…
Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope
The rapid emergence of spatial transcriptomics (ST) technologies is revolutionizing our understanding of tissue spatial architecture and biology. Although current ST methods, whether based on next-generation sequencing (seq-based approaches) or fluorescence in situ hybridization (image-based approac...
Autores principales: | Wan, Xiaomeng, Xiao, Jiashun, Tam, Sindy Sing Ting, Cai, Mingxuan, Sugimura, Ryohichi, Wang, Yang, Wan, Xiang, Lin, Zhixiang, Wu, Angela Ruohao, Yang, Can |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687049/ https://www.ncbi.nlm.nih.gov/pubmed/38030617 http://dx.doi.org/10.1038/s41467-023-43629-w |
Ejemplares similares
-
Organoid-based single-cell spatiotemporal gene expression landscape of human embryonic development and hematopoiesis
por: Chao, Yiming, et al.
Publicado: (2023) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics
por: Li, Chen, et al.
Publicado: (2023) -
FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets
por: Ming, Jingsi, et al.
Publicado: (2022) -
SPACEL: deep learning-based characterization of spatial transcriptome architectures
por: Xu, Hao, et al.
Publicado: (2023)