Cargando…
TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records
Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through f...
Autores principales: | Yang, Zhichao, Mitra, Avijit, Liu, Weisong, Berlowitz, Dan, Yu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687211/ https://www.ncbi.nlm.nih.gov/pubmed/38030638 http://dx.doi.org/10.1038/s41467-023-43715-z |
Ejemplares similares
-
TransformEHRs: a flexible methodology for building transparent ETL processes for EHR reuse
por: Pedrera-Jiménez, Miguel, et al.
Publicado: (2022) -
Transformation and your new EHR: the communications and change leadership playbook for implementing electronic health records
por: Delisle, Dennis R, et al.
Publicado: (2019) -
Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)–Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study
por: Li, Fei, et al.
Publicado: (2019) -
Barriers to implement Electronic Health Records (EHRs)
por: Ajami, Sima, et al.
Publicado: (2013) -
ReactionCode: format for reaction searching, analysis, classification, transform, and encoding/decoding
por: Delannée, Victorien, et al.
Publicado: (2020)