Cargando…
A common timing mechanism across different millisecond domains: evidence from perceptual and motor tasks
Temporal information processing (TIP) constitutes a complex construct that underlies many cognitive functions and operates in a few hierarchically ordered time domains. This study aimed to verify the relationship between the tens of milliseconds and hundreds of milliseconds domains, referring to per...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687244/ https://www.ncbi.nlm.nih.gov/pubmed/38030683 http://dx.doi.org/10.1038/s41598-023-48238-7 |
Sumario: | Temporal information processing (TIP) constitutes a complex construct that underlies many cognitive functions and operates in a few hierarchically ordered time domains. This study aimed to verify the relationship between the tens of milliseconds and hundreds of milliseconds domains, referring to perceptual and motor timing, respectively. Sixty four young healthy individuals participated in this study. They underwent two auditory temporal order judgement tasks to assess their performance in the tens of milliseconds domain; on this basis, groups of high-level performers (HLP) and low-level performers (LLP) were identified. Then, a maximum tapping task was used to evaluate performance in the hundreds of milliseconds domain. The most remarkable result was that HLP achieved a faster tapping rate and synchronised quicker with their “internal clock” during the tapping task than did LLP. This result shows that there is a relationship between accuracy in judging temporally asynchronous stimuli and ability to achieve and maintain the pace of a movement adequate to one’s internal pacemaker. This could indicate the strong contribution of a common timing mechanism, responsible for temporal organisation and coordination of behaviours across different millisecond domains. |
---|