Cargando…

Brain tumor feature extraction and edge enhancement algorithm based on U-Net network

BACKGROUND: Statistics show that each year more than 100,000 patients pass away from brain tumors. Due to the diverse morphology, hazy boundaries, or unbalanced categories of medical data lesions, segmentation prediction of brain tumors has significant challenges. PURPOSE: In this thesis, we highlig...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Dapeng, Gao, Xiaolian, Mao, Yanyan, Xiao, Baozhen, You, Panlu, Gai, Jiale, Zhu, Minghui, Kang, Jialong, Zhao, Feng, Mao, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687284/
https://www.ncbi.nlm.nih.gov/pubmed/38034799
http://dx.doi.org/10.1016/j.heliyon.2023.e22536
Descripción
Sumario:BACKGROUND: Statistics show that each year more than 100,000 patients pass away from brain tumors. Due to the diverse morphology, hazy boundaries, or unbalanced categories of medical data lesions, segmentation prediction of brain tumors has significant challenges. PURPOSE: In this thesis, we highlight EAV-UNet, a system designed to accurately detect lesion regions. Optimizing feature extraction, utilizing automatic segmentation techniques to detect anomalous regions, and strengthening the structure. We prioritize the segmentation problem of lesion regions, especially in cases where the margins of the tumor are more hazy. METHODS: The VGG-19 network structure is incorporated into the coding stage of the U-Net, resulting in a deeper network structure, and an attention mechanism module is introduced to augment the feature information. Additionally, an edge detection module is added to the encoder to extract edge information in the image, which is then passed to the decoder to aid in reconstructing the original image. Our method uses the VGG-19 in place of the U-Net encoder. To strengthen feature details, we integrate a CBAM (Channel and Spatial Attention Mechanism) module into the decoder to enhance it. To extract vital edge details from the data, we incorporate an edge recognition section into the encoder. RESULTS: All evaluation metrics show major improvements with our recommended EAV-UNet technique, which is based on a thorough analysis of experimental data. Specifically, for low contrast and blurry lesion edge images, the EAV-Unet method consistently produces forecasts that are very similar to the initial images. This technique reduced the Hausdorff distance to 1.82, achieved an F1 score of 96.1%, and attained a precision of 93.2% on Dataset 1. It obtained an F1 score of 76.8%, a Precision of 85.3%, and a Hausdorff distance reduction to 1.31 on Dataset 2. Dataset 3 displayed a Hausdorff distance cut in 2.30, an F1 score of 86.9%, and Precision of 95.3%. CONCLUSIONS: We conducted extensive segmentation experiments using various datasets related to brain tumors. We refined the network architecture by employing smaller convolutional kernels in our strategy. To further improve segmentation accuracy, we integrated attention modules and an edge enhancement module to reinforce edge information and boost attention scores.