Cargando…
Ensemble model for predicting chronic non-communicable diseases using Latin square extraction and fuzzy-artificial neural networks from 2013 to 2019
BACKGROUND: The presented study tracks the increase or decrease in the prevalence of seventeen different chronic non-communicable diseases in Serbia. This analysis considers factors such as region, age, and gender and is based on data from two national cross-sectional studies conducted in 2013 and 2...
Autores principales: | Rankovic, Nevena, Rankovic, Dragica, Lukic, Igor, Savic, Nikola, Jovanovic, Verica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687296/ https://www.ncbi.nlm.nih.gov/pubmed/38034797 http://dx.doi.org/10.1016/j.heliyon.2023.e22561 |
Ejemplares similares
-
Unveiling the Comorbidities of Chronic Diseases in Serbia Using ML Algorithms and Kohonen Self-Organizing Maps for Personalized Healthcare Frameworks
por: Rankovic, Nevena, et al.
Publicado: (2023) -
Innovation in Hyperinsulinemia Diagnostics with ANN-L(atin square) Models
por: Rankovic, Nevena, et al.
Publicado: (2023) -
Risk Assessment and Determination of Factors That Cause the Development of Hyperinsulinemia in School-Age Adolescents
por: Lukic, Igor, et al.
Publicado: (2021) -
A Novel Approach of Determining the Risks for the Development of Hyperinsulinemia in the Children and Adolescent Population Using Radial Basis Function and Support Vector Machine Learning Algorithm
por: Lukić, Igor, et al.
Publicado: (2022) -
Improved Effort and Cost Estimation Model Using Artificial Neural Networks and Taguchi Method with Different Activation Functions
por: Rankovic, Nevena, et al.
Publicado: (2021)