Cargando…
Baldur: Bayesian Hierarchical Modeling for Label-Free Proteomics with Gamma Regressing Mean-Variance Trends
Label-free proteomics is a fast-growing methodology to infer abundances in mass spectrometry proteomics. Extensive research has focused on spectral quantification and peptide identification. However, research toward modeling and understanding quantitative proteomics data is scarce. Here we propose a...
Autores principales: | Berg, Philip, Popescu, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687340/ https://www.ncbi.nlm.nih.gov/pubmed/37806340 http://dx.doi.org/10.1016/j.mcpro.2023.100658 |
Ejemplares similares
-
A full Bayesian hierarchical mixture model for the variance of gene differential expression
por: Manda, Samuel OM, et al.
Publicado: (2007) -
Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models
por: Williams, Donald R., et al.
Publicado: (2021) -
Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model
por: Sharifi-Malvajerdi, Saeed, et al.
Publicado: (2019) -
A method for partitioning trends in genetic mean and variance to understand breeding practices
por: Oliveira, Thiago P., et al.
Publicado: (2023) -
Closing the life-cycle of normative modeling using federated hierarchical Bayesian regression
por: Kia, Seyed Mostafa, et al.
Publicado: (2022)