Cargando…
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
Emotion recognition constitutes a pivotal research topic within affective computing, owing to its potential applications across various domains. Currently, emotion recognition methods based on deep learning frameworks utilizing electroencephalogram (EEG) signals have demonstrated effective applicati...
Autores principales: | Lu, Wei, Liu, Haiyan, Ma, Hua, Tan, Tien-Ping, Xia, Lingnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687359/ https://www.ncbi.nlm.nih.gov/pubmed/38034069 http://dx.doi.org/10.3389/fnhum.2023.1280241 |
Ejemplares similares
-
Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2021) -
SSTM-IS: simplified STM method based on instance selection for real-time EEG emotion recognition
por: Ran, Shuang, et al.
Publicado: (2023) -
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023) -
STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
por: Li, Jingcong, et al.
Publicado: (2023) -
Electroencephalogram Access for Emotion Recognition Based on a Deep Hybrid Network
por: Zhong, Qinghua, et al.
Publicado: (2020)