Cargando…
Assessment of Artificial Intelligence Performance on the Otolaryngology Residency In‐Service Exam
OBJECTIVES: This study seeks to determine the potential use and reliability of a large language learning model for answering questions in a sub‐specialized area of medicine, specifically practice exam questions in otolaryngology–head and neck surgery and assess its current efficacy for surgical trai...
Autores principales: | Mahajan, Arushi P., Shabet, Christina L., Smith, Joshua, Rudy, Shannon F., Kupfer, Robbi A., Bohm, Lauren A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687376/ https://www.ncbi.nlm.nih.gov/pubmed/38034065 http://dx.doi.org/10.1002/oto2.98 |
Ejemplares similares
-
Association of Virtual Away Rotations With Residency Applicant Outcomes in Otolaryngology
por: Lenze, Nicholas R., et al.
Publicado: (2023) -
Cost of the Otolaryngology Residency Application Process: Comparison
With Other Specialties and Equity Implications
por: Benjamin, William J., et al.
Publicado: (2022) -
Impact of applicant and program factors on preference signaling outcomes in otolaryngology
por: Benjamin, William J., et al.
Publicado: (2023) -
Opportunity for Improved Transparency on Otolaryngology Residency
Websites for Prospective Applicants
por: Mott, Nicole M., et al.
Publicado: (2021) -
An Evaluation of Otolaryngology Residency Program Websites
por: Reese, Alyssa, et al.
Publicado: (2023)