Cargando…
Multi-Objective artificial bee colony optimized hybrid deep belief network and XGBoost algorithm for heart disease prediction
The global rise in heart disease necessitates precise prediction tools to assess individual risk levels. This paper introduces a novel Multi-Objective Artificial Bee Colony Optimized Hybrid Deep Belief Network and XGBoost (HDBN-XG) algorithm, enhancing coronary heart disease prediction accuracy. Key...
Autores principales: | Kalita, Kanak, Ganesh, Narayanan, Jayalakshmi, Sambandam, Chohan, Jasgurpreet Singh, Mallik, Saurav, Qin, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687430/ https://www.ncbi.nlm.nih.gov/pubmed/38034907 http://dx.doi.org/10.3389/fdgth.2023.1279644 |
Ejemplares similares
-
Dynamic population artificial bee colony algorithm for multi-objective optimal power flow
por: Ding, Man, et al.
Publicado: (2017) -
Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection
por: Gu, Yijun, et al.
Publicado: (2022) -
Improved multi-objective artificial bee colony algorithm-based path planning for mobile robots
por: Cui, Qiuyu, et al.
Publicado: (2023) -
Influence of Deposition Time on Titanium Nitride (TiN) Thin Film Coating Synthesis Using Chemical Vapour Deposition
por: Ghadai, Ranjan Kumar, et al.
Publicado: (2023) -
An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection
por: Chen, Wei
Publicado: (2014)