Cargando…
Graph embedding and geometric deep learning relevance to network biology and structural chemistry
Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intellige...
Autores principales: | Lecca, Paola, Lecca, Michela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687447/ https://www.ncbi.nlm.nih.gov/pubmed/38035201 http://dx.doi.org/10.3389/frai.2023.1256352 |
Ejemplares similares
-
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark
por: Carta, Antonio, et al.
Publicado: (2022) -
Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma
por: Thiéry, Alexandre H., et al.
Publicado: (2023) -
Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs
por: Gunduz, Hakan
Publicado: (2022) -
Generalizable Machine Learning in Neuroscience Using Graph Neural Networks
por: Wang, Paul Y., et al.
Publicado: (2021)