Cargando…
Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study
BACKGROUND: Step counts are increasingly used in public health and clinical research to assess well-being, lifestyle, and health status. However, estimating step counts using commercial activity trackers has several limitations, including a lack of reproducibility, generalizability, and scalability....
Autores principales: | Straczkiewicz, Marcin, Keating, Nancy L, Thompson, Embree, Matulonis, Ursula A, Campos, Susana M, Wright, Alexi A, Onnela, Jukka-Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687676/ https://www.ncbi.nlm.nih.gov/pubmed/37966891 http://dx.doi.org/10.2196/47646 |
Ejemplares similares
-
Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
A systematic review of smartphone-based human activity recognition methods for health research
por: Straczkiewicz, Marcin, et al.
Publicado: (2021) -
A “one-size-fits-most” walking recognition method for smartphones, smartwatches, and wearable accelerometers
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones
por: Kang, Xiaomin, et al.
Publicado: (2018) -
Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones
por: Song, Zihan, et al.
Publicado: (2022)