Cargando…
Development and Validation of Machine Learning–Based Models to Predict In-Hospital Mortality in Life-Threatening Ventricular Arrhythmias: Retrospective Cohort Study
BACKGROUND: Life-threatening ventricular arrhythmias (LTVAs) are main causes of sudden cardiac arrest and are highly associated with an increased risk of mortality. A prediction model that enables early identification of the high-risk individuals is still lacking. OBJECTIVE: We aimed to build machin...
Autores principales: | Li, Le, Ding, Ligang, Zhang, Zhuxin, Zhou, Likun, Zhang, Zhenhao, Xiong, Yulong, Hu, Zhao, Yao, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687678/ https://www.ncbi.nlm.nih.gov/pubmed/37966870 http://dx.doi.org/10.2196/47664 |
Ejemplares similares
-
Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis
por: Li, Le, et al.
Publicado: (2023) -
Causal effects between atrial fibrillation and heart failure: evidence from a bidirectional Mendelian randomization study
por: Zhang, Zhuxin, et al.
Publicado: (2023) -
Prognostic significance of the stress hyperglycemia ratio in critically ill patients
por: Li, Le, et al.
Publicado: (2023) -
Prognostic value of high-sensitivity C-reactive protein in patients undergoing percutaneous coronary intervention with different glycemic metabolism status
por: Li, Le, et al.
Publicado: (2023) -
Loperamide Induced Life Threatening Ventricular Arrhythmia
por: Upadhyay, Ankit, et al.
Publicado: (2016)