Cargando…
Multi-classification model incorporating radiomics and clinic-radiological features for predicting invasiveness and differentiation of pulmonary adenocarcinoma nodules
PURPOSE: To develop a comprehensive multi-classification model that combines radiomics and clinic-radiological features to accurately predict the invasiveness and differentiation of pulmonary adenocarcinoma nodules. METHODS: A retrospective analysis was conducted on a cohort comprising 500 patients...
Autores principales: | Sun, Haitao, Zhang, Chunling, Ouyang, Aimei, Dai, Zhengjun, Song, Peiji, Yao, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687925/ https://www.ncbi.nlm.nih.gov/pubmed/38037082 http://dx.doi.org/10.1186/s12938-023-01180-1 |
Ejemplares similares
-
Development and Validation a Nomogram Incorporating CT Radiomics Signatures and Radiological Features for Differentiating Invasive Adenocarcinoma From Adenocarcinoma In Situ and Minimally Invasive Adenocarcinoma Presenting as Ground-Glass Nodules Measuring 5-10mm in Diameter
por: Shi, Lili, et al.
Publicado: (2021) -
A delta-radiomics model for preoperative prediction of invasive lung adenocarcinomas manifesting as radiological part-solid nodules
por: Chen, Wufei, et al.
Publicado: (2022) -
Development of a novel nomogram-based model incorporating 3D radiomic signatures and lung CT radiological features for differentiating invasive adenocarcinoma from adenocarcinoma in situ and minimally invasive adenocarcinoma
por: Ren, He, et al.
Publicado: (2022) -
Comparison of Comprehensive Morphological and Radiomics Features of Subsolid Pulmonary Nodules to Distinguish Minimally Invasive Adenocarcinomas and Invasive Adenocarcinomas in CT Scan
por: Qiu, Lu, et al.
Publicado: (2022) -
Radiomic features analysis in computed tomography images of lung nodule classification
por: Chen, Chia-Hung, et al.
Publicado: (2018)