Cargando…
Computational Tools for Handling Molecular Clusters: Configurational Sampling, Storage, Analysis, and Machine Learning
[Image: see text] Computational modeling of atmospheric molecular clusters requires a comprehensive understanding of their complex configurational spaces, interaction patterns, stabilities against fragmentation, and even dynamic behaviors. To address these needs, we introduce the Jammy Key framework...
Autores principales: | Kubečka, Jakub, Besel, Vitus, Neefjes, Ivo, Knattrup, Yosef, Kurtén, Theo, Vehkamäki, Hanna, Elm, Jonas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688175/ https://www.ncbi.nlm.nih.gov/pubmed/38046354 http://dx.doi.org/10.1021/acsomega.3c07412 |
Ejemplares similares
-
Improved Configurational
Sampling Protocol for Large
Atmospheric Molecular Clusters
por: Wu, Haide, et al.
Publicado: (2023) -
Clusterome: A Comprehensive
Data Set of Atmospheric
Molecular Clusters for Machine Learning Applications
por: Knattrup, Yosef, et al.
Publicado: (2023) -
Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules
por: Besel, Vitus, et al.
Publicado: (2023) -
Clusteromics IV: The Role of Nitric Acid in Atmospheric
Cluster Formation
por: Knattrup, Yosef, et al.
Publicado: (2022) -
Clusteromics V:
Organic Enhanced Atmospheric Cluster
Formation
por: Ayoubi, Daniel, et al.
Publicado: (2023)