Cargando…
Robustness of Local Predictions in Atomistic Machine Learning Models
[Image: see text] Machine learning (ML) models for molecules and materials commonly rely on a decomposition of the global target quantity into local, atom-centered contributions. This approach is convenient from a computational perspective, enabling large-scale ML-driven simulations with a linear-sc...
Autores principales: | Chong, Sanggyu, Grasselli, Federico, Ben Mahmoud, Chiheb, Morrow, Joe D., Deringer, Volker L., Ceriotti, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688186/ https://www.ncbi.nlm.nih.gov/pubmed/37948446 http://dx.doi.org/10.1021/acs.jctc.3c00704 |
Ejemplares similares
-
Coarse-grained versus fully atomistic machine learning for zeolitic imidazolate frameworks
por: Faure Beaulieu, Zoé, et al.
Publicado: (2023) -
Towards an atomistic understanding of disordered carbon electrode materials
por: Deringer, Volker L., et al.
Publicado: (2018) -
Reaction prediction via atomistic simulation: from quantum mechanics to machine learning
por: Kang, Pei-Lin, et al.
Publicado: (2020) -
MLatom 2: An Integrative Platform for Atomistic Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2021) -
Exploring the configurational space of amorphous graphene with machine-learned atomic energies
por: El-Machachi, Zakariya, et al.
Publicado: (2022)