Cargando…
BioAct-Het: A Heterogeneous Siamese Neural Network for Bioactivity Prediction Using Novel Bioactivity Representation
[Image: see text] Drug failure during experimental procedures due to low bioactivity presents a significant challenge. To mitigate this risk and enhance compound bioactivities, predicting bioactivity classes during lead optimization is essential. The existing studies on structure–activity relationsh...
Autores principales: | Paykan Heyrati, Mehdi, Ghorbanali, Zahra, Akbari, Mohammad, Pishgahi, Ghasem, Zare-Mirakabad, Fatemeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688196/ https://www.ncbi.nlm.nih.gov/pubmed/38046344 http://dx.doi.org/10.1021/acsomega.3c05778 |
Ejemplares similares
-
DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing
por: Ghorbanali, Zahra, et al.
Publicado: (2023) -
Introduction to the potential of Ferula ovina in dental implant research due to estrogenic bioactive compounds and adhesive properties
por: Zare Mirakabad, Hoda, et al.
Publicado: (2022) -
Siamese Recurrent Neural Network with a Self-Attention
Mechanism for Bioactivity Prediction
por: Fernández-Llaneza, Daniel, et al.
Publicado: (2021) -
Recent Progress in the Synthesis of Drugs and Bioactive Molecules Incorporating Nitro(het)arene Core
por: Bastrakov, Maxim, et al.
Publicado: (2022) -
The assessment of efficient representation of drug features using deep learning for drug repositioning
por: Moridi, Mahroo, et al.
Publicado: (2019)