Cargando…
Global Urinary Volatolomics with (GC×)GC-TOF-MS
[Image: see text] Urinary volatolomics offers a noninvasive approach for disease detection and monitoring. Herein we present an improved methodology for global volatolomic profiling. Wide coverage was achieved by utilizing a multiphase sorbent for volatile organic compound (VOC) extraction. A single...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688225/ https://www.ncbi.nlm.nih.gov/pubmed/37967208 http://dx.doi.org/10.1021/acs.analchem.3c02523 |
Sumario: | [Image: see text] Urinary volatolomics offers a noninvasive approach for disease detection and monitoring. Herein we present an improved methodology for global volatolomic profiling. Wide coverage was achieved by utilizing a multiphase sorbent for volatile organic compound (VOC) extraction. A single, midpolar column gas chromatography (GC) assay yielded substantially higher numbers of monitored VOCs compared to our previously reported single-sorbent method. Multidimensional GC (GC×GC) enhanced further biomarker discovery while data analysis was simplified by using a tile-based approach. At the same time, the required urine volume was reduced 5-fold from 2 to 0.4 mL. The applicability of the methodology was demonstrated in a pancreatic ductal adenocarcinoma cohort where previous findings were confirmed while a series of additional VOCs with diagnostic potential were discovered. |
---|