Cargando…
Predictive value of machine learning for the risk of acute kidney injury (AKI) in hospital intensive care units (ICU) patients: a systematic review and meta-analysis
BACKGROUND: Recent studies suggest machine learning represents a promising predictive option for patients in intensive care units (ICU). However, the machine learning performance regarding its actual predictive value for early detection in acute kidney injury (AKI) patients remains uncertain. OBJECT...
Autores principales: | Du, Yuan Hong, Guan, Cheng Jing, Li, Lin Yu, Gan, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688305/ https://www.ncbi.nlm.nih.gov/pubmed/38034868 http://dx.doi.org/10.7717/peerj.16405 |
Ejemplares similares
-
The predisposing factors of AKI for prophylactic strategies in burn care
por: Tsai, Shin-Yi, et al.
Publicado: (2020) -
CHARACTERISTICS AND OUTCOMES OF PATIENTS WITH COVID-19 WITH ACUTE KIDNEY INJURY IN ICU
por: CHARKVIANI, MARIAM, et al.
Publicado: (2021) -
RISK FACTORS FOR THE DEVELOPMENT OF ACUTE KIDNEY INJURY OCCURRING IN PATIENTS WITH COVID-19 ADMITTED TO THE ICU
por: IGLESIAS, JOSE, et al.
Publicado: (2021) -
NOT AN ALL OUT FAILURE: RRT IN AKI IN PATIENTS WITH COVID-19
por: GRANT-SITTOL, JANEEN, et al.
Publicado: (2021) -
Acute kidney injury-attributable mortality in critically ill patients with sepsis
por: Wang, Zhiyi, et al.
Publicado: (2022)