Cargando…
The potential impact of advanced footwear technology on the recent evolution of elite sprint performances
BACKGROUND: Elite track and field sprint performances have reached a point of stability as we near the limits of human physiology, and further significant improvements may require technological intervention. Following the widely reported performance benefits of new advanced footwear technology (AFT)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688325/ https://www.ncbi.nlm.nih.gov/pubmed/38034865 http://dx.doi.org/10.7717/peerj.16433 |
Sumario: | BACKGROUND: Elite track and field sprint performances have reached a point of stability as we near the limits of human physiology, and further significant improvements may require technological intervention. Following the widely reported performance benefits of new advanced footwear technology (AFT) in road-running events, similar innovations have since been applied to sprint spikes in hope of providing similar performance enhancing benefits. However, it is not yet clear based on current evidence whether there have been subsequent improvements in sprint performance. Therefore, the aims of this study were to establish if there have been recent year-to-year improvements in the times of the annual top 100 and top 20 athletes in the men’s and women’s sprint events, and to establish if there is an association between the extensive use of AFT and potential recent improvements in sprint performances. METHODS: For the years 2016–19 and 2021–2022, the season best performances of the top 100 athletes in each sprint event were extracted from the World Athletics Top lists. Independent t-tests with Holm corrections were performed using the season’s best performance of the top 100 and top 20 athletes in each year to identify significant differences between years for each sprint discipline. Following the classification of shoes worn by the top 20 athletes in each event during their annual best race (AFT or non-AFT), separate linear mixed-model regressions were performed to determine the influence of AFT on performance times. RESULTS: For the top 100 and top 20 athletes, there were no significant differences year-to-year in any sprint event prior to the release of AFT (2016–2019). There were significant differences between AFT years (2021 or 2022) and pre-AFT years (2016–2019) in eight out of 10 events. These differences ranged from a 0.40% improvement (men’s 100 m) to a 1.52% improvement (women’s 400 m hurdles). In the second analysis, multiple linear mixed model regressions revealed that the use of AFT was associated with improved performance in six out of ten events, including the men’s and women’s 100 m, women’s 200 m, men’s 110 m hurdles, women’s 100 m hurdles and women’s 400 m hurdles (estimate range: −0.037 – 0.521, p = <0.001 – 0.021). Across both analyses, improvements were more pronounced in women’s sprint events than men’s sprint events. CONCLUSION: Following a period of stability, there were significant improvements in most sprint events which may be partly explained by advances in footwear technology. These improvements appear to be mediated by event, sex and potentially level of athlete. |
---|