Cargando…
Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries
Aqueous zinc ion batteries (AZIBs) are the promising candidate for energy storage where safety and low cost are the major concerns. However, the uneven and random electrodeposition of Zn has become a serious impediment to the deep recharging of AZIBs. Conventional modifications on zinc substrate can...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688396/ https://www.ncbi.nlm.nih.gov/pubmed/38046635 http://dx.doi.org/10.1039/d3ra05177c |
_version_ | 1785152165959958528 |
---|---|
author | Luo, Lei Wen, Zhaorui Hong, Guo Chen, Shi |
author_facet | Luo, Lei Wen, Zhaorui Hong, Guo Chen, Shi |
author_sort | Luo, Lei |
collection | PubMed |
description | Aqueous zinc ion batteries (AZIBs) are the promising candidate for energy storage where safety and low cost are the major concerns. However, the uneven and random electrodeposition of Zn has become a serious impediment to the deep recharging of AZIBs. Conventional modifications on zinc substrate can promote homogenous zinc deposition initially, but not sustainably. Here, an oxidized polyacrylonitrile (OPAN) membrane with a conjugated planar structure is proposed as a zinc ion battery separator. This separator can continuously regulate the growth of Zn with (002) texture to inhibit dendrites. In addition, the separator has a fast Zn(2+) ion transfer, which can spontaneously repel SO(4)(2−) and relieve side reactions. As a result, the Zn-symmetric batteries show cycle lifetime of more than 1300 hours at 1 mA cm(−2) and 1 mA h cm(−2), and kept stable for more than 160 hours even at 65% high discharge of depth (DOD). The MnO(2)//Zn full celled assembled with an OPAN separator had very little decay for 5000 cycles at 2 A g(−1). This work provides a new method for realizing the continuous and uniform deposition of Zn metals, which also provides a new route for batteries with metallic anodes. |
format | Online Article Text |
id | pubmed-10688396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-106883962023-12-01 Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries Luo, Lei Wen, Zhaorui Hong, Guo Chen, Shi RSC Adv Chemistry Aqueous zinc ion batteries (AZIBs) are the promising candidate for energy storage where safety and low cost are the major concerns. However, the uneven and random electrodeposition of Zn has become a serious impediment to the deep recharging of AZIBs. Conventional modifications on zinc substrate can promote homogenous zinc deposition initially, but not sustainably. Here, an oxidized polyacrylonitrile (OPAN) membrane with a conjugated planar structure is proposed as a zinc ion battery separator. This separator can continuously regulate the growth of Zn with (002) texture to inhibit dendrites. In addition, the separator has a fast Zn(2+) ion transfer, which can spontaneously repel SO(4)(2−) and relieve side reactions. As a result, the Zn-symmetric batteries show cycle lifetime of more than 1300 hours at 1 mA cm(−2) and 1 mA h cm(−2), and kept stable for more than 160 hours even at 65% high discharge of depth (DOD). The MnO(2)//Zn full celled assembled with an OPAN separator had very little decay for 5000 cycles at 2 A g(−1). This work provides a new method for realizing the continuous and uniform deposition of Zn metals, which also provides a new route for batteries with metallic anodes. The Royal Society of Chemistry 2023-11-30 /pmc/articles/PMC10688396/ /pubmed/38046635 http://dx.doi.org/10.1039/d3ra05177c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Luo, Lei Wen, Zhaorui Hong, Guo Chen, Shi Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries |
title | Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries |
title_full | Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries |
title_fullStr | Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries |
title_full_unstemmed | Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries |
title_short | Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries |
title_sort | reliable lateral zn deposition along (002) plane by oxidized pan separator for zinc-ion batteries |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688396/ https://www.ncbi.nlm.nih.gov/pubmed/38046635 http://dx.doi.org/10.1039/d3ra05177c |
work_keys_str_mv | AT luolei reliablelateralzndepositionalong002planebyoxidizedpanseparatorforzincionbatteries AT wenzhaorui reliablelateralzndepositionalong002planebyoxidizedpanseparatorforzincionbatteries AT hongguo reliablelateralzndepositionalong002planebyoxidizedpanseparatorforzincionbatteries AT chenshi reliablelateralzndepositionalong002planebyoxidizedpanseparatorforzincionbatteries |