Cargando…
Finding the best trade-off between performance and interpretability in predicting hospital length of stay using structured and unstructured data
OBJECTIVE: This study aims to develop high-performing Machine Learning and Deep Learning models in predicting hospital length of stay (LOS) while enhancing interpretability. We compare performance and interpretability of models trained only on structured tabular data with models trained only on unst...
Autores principales: | Jaotombo, Franck, Adorni, Luca, Ghattas, Badih, Boyer, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688642/ https://www.ncbi.nlm.nih.gov/pubmed/38032876 http://dx.doi.org/10.1371/journal.pone.0289795 |
Ejemplares similares
-
Machine-learning prediction for hospital length of stay using a French medico-administrative database
por: Jaotombo, Franck, et al.
Publicado: (2022) -
Machine-learning prediction of unplanned 30-day rehospitalization using the French hospital medico-administrative database
por: Jaotombo, Franck, et al.
Publicado: (2020) -
The prediction of hospital length of stay using unstructured data
por: Chrusciel, Jan, et al.
Publicado: (2021) -
Telomere Length and the Cancer–Atherosclerosis Trade-Off
por: Stone, Rivka C., et al.
Publicado: (2016) -
Computerized adaptive testing with decision regression trees: an alternative to item response theory for quality of life measurement in multiple sclerosis
por: Michel, Pierre, et al.
Publicado: (2018)