Cargando…

Prevalence of biofilm producing Acinetobacter baumannii clinical isolates: A systematic review and meta-analysis

BACKGROUND: Acinetobacter baumannii, the first human pathogen to be designated as a "red-alert" pathogen, is on the critical priority list of pathogens requiring new antibiotics. Biofilm-associated diseases are the most common infections caused by the antibiotic-resistant bacteria A. bauma...

Descripción completa

Detalles Bibliográficos
Autores principales: Gedefie, Alemu, Alemayehu, Ermiyas, Mohammed, Ousman, Bambo, Getachew Mesfin, Kebede, Samuel Sahile, Kebede, Berhanu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688650/
https://www.ncbi.nlm.nih.gov/pubmed/38032906
http://dx.doi.org/10.1371/journal.pone.0287211
Descripción
Sumario:BACKGROUND: Acinetobacter baumannii, the first human pathogen to be designated as a "red-alert" pathogen, is on the critical priority list of pathogens requiring new antibiotics. Biofilm-associated diseases are the most common infections caused by the antibiotic-resistant bacteria A. baumannii. Multidrug-resistant strains are more easily transmitted around the world due to A. baumannii’s ability to produce biofilms, which allows it to develop antibiotic resistance mechanisms and thrive in healthcare environments. As a result, A. baumannii infections are becoming increasingly common in hospital settings allover the world. As a result, a comprehensive systematic review and meta-analysis were carried out to determine the global prevalence of biofilm-producing A. baumannii clinical isolates. METHODS: Articles were extensively searched in bibliographic databases and grey literatures using entry terms or phrases. Studies meeting eligibility criteria were extracted in MS Excel and exported into STATA version 12 software for statistical analysis. A random-effects model was used to compute the pooled prevalence of biofilm-producing A. baumannii clinical isolates. The heterogeneity was quantified by using the I(2) value. Publication bias was assessed using a funnel plot and Egger’s test. Sensitivity analysis was done to assess the impact of a single study on pooled effect size. RESULT: Of the 862 studies identified, 26 studies consisted of 2123 A.baumannii clinical isolates of which 1456 were biofilm-producing. The pooled prevalence of biofilm-producing A.baumannii clinical isolates was 65.63% (95% CI = 56.70%-74.56%). There was substantial heterogeneity with an I(2) value of 98.1%. Moreover, 41.34%, 33.57%, and 27.63% of isolates of strong, mild, and weak producers of biofilm. Higher prevalence was found in studies published after 2014 (66.31%); Western Pacific region (76.17%); and Asia (66.22%) followed by the African continent (57.29%). CONCLUSION: The pooled prevalence of biofilm-producing A. baumannii clinical isolates has risen alarmingly, posing a public health risk. This indicates the burden of biofilm-producing A. baumannii infections urges routine screening and appropriate treatment for better management of hospitalized patients, as well as effective controlling of the emergence of drug resistance. Furthermore, this finding is an alert call for the stakeholders to develop strong infection prevention and antibiotics stewardship programs for the prevention and control of biofilm-producing bacterial infections.