Cargando…
Lightweight Deep Learning Models for High-Precision Rice Seedling Segmentation from UAV-Based Multispectral Images
Accurate segmentation and detection of rice seedlings is essential for precision agriculture and high-yield cultivation. However, current methods suffer from high computational complexity and poor robustness to different rice varieties and densities. This article proposes 2 lightweight neural networ...
Autores principales: | Zhang, Panli, Sun, Xiaobo, Zhang, Donghui, Yang, Yuechao, Wang, Zhenhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688663/ https://www.ncbi.nlm.nih.gov/pubmed/38047001 http://dx.doi.org/10.34133/plantphenomics.0123 |
Ejemplares similares
-
Unsupervised Bayesian learning for rice panicle segmentation with UAV images
por: Hayat, Md Abul, et al.
Publicado: (2020) -
Semantic segmentation of multispectral photoacoustic images using deep learning
por: Schellenberg, Melanie, et al.
Publicado: (2022) -
Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods
por: Wu, Tianao, et al.
Publicado: (2023) -
Joint Fusion and Detection via Deep Learning in UAV-Borne Multispectral Sensing of Scatterable Landmine †
por: Qiu, Zhongze, et al.
Publicado: (2023) -
Corrigendum: Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods
por: Wu, Tianao, et al.
Publicado: (2023)