Cargando…
Link prediction and feature relevance in knowledge networks: A machine learning approach
We propose a supervised machine learning approach to predict partnership formation between universities. We focus on successful joint R&D projects funded by the Horizon 2020 programme in three research domains: Social Sciences and Humanities, Physical and Engineering Sciences, and Life Sciences....
Autores principales: | Zinilli, Antonio, Cerulli, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688692/ https://www.ncbi.nlm.nih.gov/pubmed/38032965 http://dx.doi.org/10.1371/journal.pone.0290018 |
Ejemplares similares
-
Machine learning prediction of academic collaboration networks
por: Resce, Giuliano, et al.
Publicado: (2022) -
Outlining the Orientation Toward Socially Relevant Issues in Competitive R&D Funding Instruments
por: Spinello, Andrea Orazio, et al.
Publicado: (2021) -
Prediction of prokaryotic transposases from protein features with machine learning approaches
por: Wang, Qian, et al.
Publicado: (2021) -
“Stealing fire or stacking knowledge” by machine intelligence to model link prediction in complex networks
por: Muscoloni, Alessandro, et al.
Publicado: (2022) -
Identification of Relevant Protein Interactions with Partial Knowledge: A Complex Network and Deep Learning Approach
por: Ortiz-Vilchis, Pilar, et al.
Publicado: (2023)