Cargando…
In vitro characterization of the phage lysis protein MS2-L
Background: The peptide MS2-L represents toxins of the ssRNA Leviviridae phage family and consists of a predicted N-terminal soluble domain followed by a transmembrane domain. MS2-L mediates bacterial cell lysis through the formation of large lesions in the cell envelope, but further details of this...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
OAE Publishing Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688784/ https://www.ncbi.nlm.nih.gov/pubmed/38045926 http://dx.doi.org/10.20517/mrr.2023.28 |
Sumario: | Background: The peptide MS2-L represents toxins of the ssRNA Leviviridae phage family and consists of a predicted N-terminal soluble domain followed by a transmembrane domain. MS2-L mediates bacterial cell lysis through the formation of large lesions in the cell envelope, but further details of this mechanism as a prerequisite for applied bioengineering studies are lacking. The chaperone DnaJ is proposed to modulate MS2-L activity, whereas other cellular targets of MS2-L are unknown. Methods: Here, we provide a combined in vitro and in vivo overexpression approach to reveal molecular insights into MS2-L action and its interaction with DnaJ. Full-length MS2-L and truncated derivatives were synthesized cell-free and co-translationally inserted into nanodiscs or solubilized in detergent micelles. By native liquid bead ion desorption mass spectrometry, we demonstrate that MS2-L assembles into high oligomeric states after membrane insertion. Results: Oligomerization is directed by the transmembrane domain and is impaired in detergent environments. Studies with truncated MS2-L derivatives provide evidence that the soluble domain acts as a modulator of oligomer formation. DnaJ strongly interacts with MS2-L in membranes as well as in detergent environments. However, this interaction affects neither the MS2-L membrane insertion efficiency nor its oligomerization in nanodisc membranes. In accordance with the in vitro data, the assembly of MS2-L derivatives into large membrane located clusters was monitored by overexpression of corresponding fusions with fluorescent monitors in E. coli cells. Analysis by cryo-electron microscopy indicates that lesion formation is initiated in the outer membrane, followed by disruption of the peptidoglycan layer and disintegration of the inner membrane. Conclusion: MS2-L forms oligomeric complexes similar to the related phage toxin ΦX174-E. The oligomeric interface of both peptides is located within their transmembrane domains. We propose a potential function of the higher-order assembly of small phage toxins in membrane disintegration and cell lysis. |
---|