Cargando…

The gut-immune-brain axis in neurodevelopment and neurological disorders

The gut-brain axis is gaining momentum as an interdisciplinary field addressing how intestinal microbes influence the central nervous system (CNS). Studies using powerful tools, including germ-free, antibiotic-fed, and fecal microbiota transplanted mice, demonstrate how gut microbiota perturbations...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, John Chulhoon, Im, Sin-Hyeog
Formato: Online Artículo Texto
Lenguaje:English
Publicado: OAE Publishing Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688819/
https://www.ncbi.nlm.nih.gov/pubmed/38046904
http://dx.doi.org/10.20517/mrr.2022.11
Descripción
Sumario:The gut-brain axis is gaining momentum as an interdisciplinary field addressing how intestinal microbes influence the central nervous system (CNS). Studies using powerful tools, including germ-free, antibiotic-fed, and fecal microbiota transplanted mice, demonstrate how gut microbiota perturbations alter the fate of neurodevelopment. Probiotics are also becoming more recognized as potentially effective therapeutic agents in alleviating symptoms of neurological disorders. While gut microbes may directly communicate with the CNS through their effector molecules, including metabolites, their influence on neuroimmune populations, including newly discovered brain-resident T cells, underscore the host immunity as a potent mediator of the gut-brain axis. In this review, we examine the unique immune populations within the brain, the effects of the gut microbiota on the CNS, and the efficacy of specific probiotic strains to propose the novel concept of the gut-immune-brain axis.