Cargando…
Identification of novel genera and subcluster classifications for mycobacteriophages
Aim: To identify novel genera amongst mycobacteriophages (MP) and verify a hypothesised correlation between the taxonomy set by the International Committee on Taxonomy of Viruses (ICTV) and the National Centre for Biotechnology Information (NCBI) with that of the Actinobacteriophage Database, which...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
OAE Publishing Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688833/ https://www.ncbi.nlm.nih.gov/pubmed/38046825 http://dx.doi.org/10.20517/mrr.2023.17 |
Sumario: | Aim: To identify novel genera amongst mycobacteriophages (MP) and verify a hypothesised correlation between the taxonomy set by the International Committee on Taxonomy of Viruses (ICTV) and the National Centre for Biotechnology Information (NCBI) with that of the Actinobacteriophage Database, which may help formalise subcluster assignment. Methods: A dataset of 721 MP genomes was analysed using VIRIDIC, a nucleotide alignment-based software that predicts genus assignments. Potentially novel genera were analysed using Gegenees and VICTOR, respectively. These genera were then compared to the subclusters assigned by the Actinobacteriophage Database to verify a hypothesis that one genus can be assigned to one subcluster (i.e., the genus-subcluster hypothesis). Results: Initially, when comparing the current genus classifications of the 721 MP dataset to the Actinobacteriophage database subcluster assignments, 83.3% of subclusters supported the genus-subcluster hypothesis. Following the sequential VIRIDIC, Gegenees and VICTOR analyses, a total of 20 novel genera were identified based on a ≥ 70% and ~ 50% similarity threshold for VIRIDIC and Gegenees, respectively, and a monophyletic nature in the VICTOR output. Interestingly, these criteria also appear to support the creation of 13 novel subclusters, which would increase the support for the genus-subcluster hypothesis to 97.6%. Conclusion: The link between genus and subcluster classifications appears robust, as most subclusters can be assigned a single genus and vice versa. By relating the taxonomic and clustering classification systems, they can be easily kept up to date to best reflect MP diversity, which could aid the rapid selection of related (or diverse) phages for research, therapeutic and diagnostic purposes. |
---|