Cargando…
Combining data discretization and missing value imputation for incomplete medical datasets
Data discretization aims to transform a set of continuous features into discrete features, thus simplifying the representation of information and making it easier to understand, use, and explain. In practice, users can take advantage of the discretization process to improve knowledge discovery and d...
Autores principales: | Huang, Min-Wei, Tsai, Chih-Fong, Tsui, Shu-Ching, Lin, Wei-Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688879/ https://www.ncbi.nlm.nih.gov/pubmed/38033140 http://dx.doi.org/10.1371/journal.pone.0295032 |
Ejemplares similares
-
Outlier Removal in Model-Based Missing Value Imputation for Medical Datasets
por: Huang, Min-Wei, et al.
Publicado: (2018) -
The impact of imputation quality on machine learning classifiers for datasets with missing values
por: Shadbahr, Tolou, et al.
Publicado: (2023) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014) -
Shrinkage regression-based methods for microarray missing value imputation
por: Wang, Hsiuying, et al.
Publicado: (2013) -
Discrete Missing Data Imputation Using Multilayer Perceptron and Momentum Gradient Descent †
por: Pan, Hu, et al.
Publicado: (2022)