Cargando…
Reconstructing aerosol optical depth using spatiotemporal Long Short-Term Memory convolutional autoencoder
Aerosol Optical Depth (AOD) is a crucial atmospheric parameter in comprehending climate change, air quality, and its impacts on human health. Satellites offer exceptional spatiotemporal AOD data continuity. However, data quality is influenced by various atmospheric, landscape, and instrumental facto...
Autores principales: | Liang, Lu, Daniels, Jacob, Biancardi, Michael, Zhou, Yuye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689425/ https://www.ncbi.nlm.nih.gov/pubmed/38036585 http://dx.doi.org/10.1038/s41597-023-02696-w |
Ejemplares similares
-
Harmonized and high-quality datasets of aerosol optical depth at a US continental site, 1997–2018
por: Kassianov, Evgueni, et al.
Publicado: (2021) -
Spatiotemporal force and motion in collective cell migration
por: Saraswathibhatla, Aashrith, et al.
Publicado: (2020) -
Optical breast atlas as a testbed for image reconstruction in optical mammography
por: Xing, Yidan, et al.
Publicado: (2021) -
Spatiotemporal patterns of population in mainland China, 1990 to 2010
por: Gaughan, Andrea E., et al.
Publicado: (2016) -
Spatiotemporal database of US congressional elections, 1896–2014
por: Wolf, Levi John
Publicado: (2017)