Cargando…
Deep convolutional architectures for extrapolative forecasts in time-dependent flow problems
Physical systems whose dynamics are governed by partial differential equations (PDEs) find numerous applications in science and engineering. The process of obtaining the solution from such PDEs may be computationally expensive for large-scale and parameterized problems. In this work, deep learning t...
Autores principales: | Bhatt, Pratyush, Kumar, Yash, Soulaïmani, Azzeddine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689563/ https://www.ncbi.nlm.nih.gov/pubmed/38046086 http://dx.doi.org/10.1186/s40323-023-00254-y |
Ejemplares similares
-
Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders
por: Abdedou, Azzedine, et al.
Publicado: (2023) -
City-Wide Traffic Flow Forecasting Using a Deep Convolutional Neural Network
por: Sun, Shangyu, et al.
Publicado: (2020) -
A method of radar echo extrapolation based on dilated convolution and attention convolution
por: Shen, Xiajiong, et al.
Publicado: (2022) -
Problems with using mechanisms to solve the problem of extrapolation
por: Howick, Jeremy, et al.
Publicado: (2013) -
Numerical Solution for the Extrapolation Problem of Analytic Functions
por: Bakas, Nikolaos P.
Publicado: (2019)