Cargando…
Molecular generation strategy and optimization based on A2C reinforcement learning in de novo drug design
MOTIVATION: In the field of pharmacochemistry, it is a time-consuming and expensive process for the new drug development. The existing drug design methods face a significant challenge in terms of generation efficiency and quality. RESULTS: In this paper, we proposed a novel molecular generation stra...
Autores principales: | Wang, Qian, Wei, Zhiqiang, Hu, Xiaotong, Wang, Zhuoya, Dong, Yujie, Liu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689670/ https://www.ncbi.nlm.nih.gov/pubmed/37971970 http://dx.doi.org/10.1093/bioinformatics/btad693 |
Ejemplares similares
-
Deep reinforcement learning for de novo drug design
por: Popova, Mariya, et al.
Publicado: (2018) -
Molecular de-novo design through deep reinforcement learning
por: Olivecrona, Marcus, et al.
Publicado: (2017) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021) -
Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds
por: Korshunova, Maria, et al.
Publicado: (2022) -
Memory-assisted reinforcement learning for diverse molecular de novo design
por: Blaschke, Thomas, et al.
Publicado: (2020)