Cargando…
pyPESTO: a modular and scalable tool for parameter estimation for dynamic models
SUMMARY: Mechanistic models are important tools to describe and understand biological processes. However, they typically rely on unknown parameters, the estimation of which can be challenging for large and complex systems. pyPESTO is a modular framework for systematic parameter estimation, with scal...
Autores principales: | Schälte, Yannik, Fröhlich, Fabian, Jost, Paul J, Vanhoefer, Jakob, Pathirana, Dilan, Stapor, Paul, Lakrisenko, Polina, Wang, Dantong, Raimúndez, Elba, Merkt, Simon, Schmiester, Leonard, Städter, Philipp, Grein, Stephan, Dudkin, Erika, Doresic, Domagoj, Weindl, Daniel, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689677/ https://www.ncbi.nlm.nih.gov/pubmed/37995297 http://dx.doi.org/10.1093/bioinformatics/btad711 |
Ejemplares similares
-
PEtab—Interoperable specification of parameter estimation problems in systems biology
por: Schmiester, Leonard, et al.
Publicado: (2021) -
Benchmarking of numerical integration methods for ODE models of biological systems
por: Städter, Philipp, et al.
Publicado: (2021) -
Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks
por: Lakrisenko, Polina, et al.
Publicado: (2023) -
PESTO: Parameter EStimation TOolbox
por: Stapor, Paul, et al.
Publicado: (2018) -
Mini-batch optimization enables training of ODE models on large-scale datasets
por: Stapor, Paul, et al.
Publicado: (2022)